Synthesis and Spectral Characterization of Tricarbonylchromium Complexes of Calix[4]arene Conformers

Hideshi Iki, Taketoshi Kikuchi and Seiji Shinkai*
Department of Organic Synthesis, Faculty of Engineering, Kyushu University, Fukuoka 812, Japan

Arene-tricarbonylchromium complexes were synthesized for the first time from cone, 1,2-alternate and 1,3-alternate conformers of 25,26,27,28-tetrapropoxycalix[4] arene.

Calix[n]arenes are cyclic oligomers which belong to the class of $\left[1_{n}\right]$-metacyclophanes. As calix[n] arenes have a cavity-shaped architecture, they are useful as building-blocks to design host-guest-type catalysts through appropriate modification of the edges. ${ }^{14}$ To design such functionalized calix[n]arenes, it is indispensable to develop methods for the selective introduction of desired functional groups into the benzene nuclei. In fact, a few groups have so far attempted to develop such synthetic methods, ${ }^{5-9}$ but there exists no general methodology for selective introduction of functional groups. When taking into account that calix[n]arenes belong to the class of $\left[1_{n}\right]$ metacyclophanes, we noticed that the formation of arene-tricarbonylchromium complexes may be utilized as a potential methodology for this purpose. ${ }^{10}$ It is known that tricarbonylchromium $\left[\mathrm{Cr}(\mathrm{CO})_{3}\right]$ forms stable η^{6}-arene complexes and the complexed benzene ring becomes extraordinarily 'reactive'. ${ }^{10-13}$ We thus expected that the functional group would be selectively introduced into the benzene unit which was activated through complexation with $\mathrm{Cr}(\mathrm{CO})_{3}$ (as shown in Scheme 1). This chemistry is also interesting from a stereochemical viewpoint: introduction of $\mathrm{Cr}(\mathrm{CO})_{3}$ into the appropriate benzene ring in calix[4]arene conformers such as partial cone and 1,2-alternate leads to the loss of a plane of symmetry. One can thus expect the formation of ring-originating opticallyactive calix[4]arenes. As a prelude to this new chemistry we here report the first example of the synthesis and spectral characterization of $\mathrm{Cr}(\mathrm{CO})_{3}$ complexes with three conformational isomers of $25,26,27,28$-tetrapropoxycalix[4]arene ($1_{4} \mathrm{Pr}$).

We first studied a $\mathrm{Cr}(\mathrm{CO})_{3}$ complex with $\mathbf{1}_{4} \mathrm{Me}$, but the ${ }^{1} \mathrm{H}$ NMR spectrum of the product was too complex to assign. The complexity is related to conformational isomerism which takes place through the oxygen-through-the-annulus rotation. ${ }^{14-16}$

1 nR

decomplexation

Scheme 1

To avoid this complexity we employed conformationallyimmobile $\mathbf{1}_{4} \operatorname{Pr}{ }^{16,17}$ Conformational isomers of $\mathbf{1}_{4} \operatorname{Pr}$ were synthesized in a manner similar to that described for their p-tertbutyl analogues. ${ }^{18}$

Cone $-1_{4} \operatorname{Pr}(0.30 \mathrm{~g}, 0.51 \mathrm{mmol})$ and $\mathrm{Cr}(\mathrm{CO})_{6}(0.15 \mathrm{~g}, 0.52$ mmol) were dissolved in a mixed solvent of dibutyl ether (27 cm^{3}) and THF ($3 \mathrm{~cm}^{3}$) and the solution was heated at $130{ }^{\circ} \mathrm{C}$ for 24 h . The solution was concentrated under reduced pressure, the oily residue being solidified by hexane. The solid product was purified by column chromatography [twice by silica gel and hexane-dichloromethane ($5: 1 \mathrm{v} / \mathrm{v}$) and once by silica gel and benzene]. These operations were all carried out under the anaerobic $\left(\mathrm{N}_{2}\right)$ conditions: yellow prisms, m.p. $171.6-173.0^{\circ} \mathrm{C}$, yield 76% (Found: $\mathrm{C}, 71.05 ; \mathrm{H}, 6.6$. Calc. for $\mathrm{C}_{43} \mathrm{H}_{48} \mathrm{CrO}_{7}$: C , $70.86 ; \mathrm{H}, 6.64 \%) . \mathrm{Cr}(\mathrm{CO})_{3}$ complexes with 1,2 -alternate $-\mathbf{1}_{4} \mathrm{Pr}$ and 1,3-alternate- $1_{4} \mathrm{Pr}$ were also synthesized in a similar manner from $\mathrm{Cr}(\mathrm{CO})_{6}$ and corresponding conformers: 1,2alternate $-1_{4} \mathrm{Pr} \cdot \mathrm{Cr}(\mathrm{CO})_{3}$, m.p. (decomp.) $144{ }^{\circ} \mathrm{C}$, yield 61% (Found: C, 70.8; $\mathrm{H}, 6.7$. Calc. for $\mathrm{C}_{43} \mathrm{H}_{48} \mathrm{CrO}_{7}$: $\mathrm{C}, 70.86$; H , 6.64%). 1,3-Alternate- $\mathbf{1}_{4} \operatorname{Pr} \cdot \mathrm{Cr}(\mathrm{CO})_{3}$, m.p. $248.7-250.2^{\circ} \mathrm{C}$, yield 48% (Found: C, 70.6; $\mathrm{H}, 6.7$. Calc. for $\mathrm{C}_{43} \mathrm{H}_{48} \mathrm{CrO}_{7}: \mathrm{C}, 70.86$; $\mathrm{H}, 6.64 \%$) The elemental analysis data indicate that $\mathrm{Cr}(\mathrm{CO})_{3}$ complexes with these three conformers are isolated as a $1: 1$ complex. \dagger We also synthesized a $\mathrm{Cr}(\mathrm{CO})_{3}$ complex with partialcone $-1{ }_{4} \mathrm{Pr}$. We detected two major spots and several minor spots. This suggests that partial-cone $-1_{4} \mathrm{Pr}$, which has three inequivalent benzene rings, results in the complex product distribution. We thus abandoned the isolation of this complex. As a noncyclic analogue we synthesized a $\mathrm{Cr}(\mathrm{CO})_{3}$ complex with propyl 2,6-dimethylphenyl ether 2: yellow prisms, m.p. $48.0-48.5^{\circ} \mathrm{C}$, yield 65% (Found: C, $55.8 ; \mathrm{H}, 5.3$. Calc. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{CrO}: \mathrm{C}, 56.00 ; \mathrm{H}, 5.37 \%$).

The ${ }^{1} \mathrm{H}$ NMR spectra of the $\mathrm{Cr}(\mathrm{CO})_{3}$ complexes were measured at $30^{\circ} \mathrm{C}$ in CDCl_{3}. The chemical shifts of the calix[4]arene protons are recorded in Fig. 1. The assignment was completed with the aid of the ${ }^{1} \mathrm{H}^{1}{ }^{1} \mathrm{H}$ COSY method and the nuclear Overhauser effect. It is seen from Fig. 1 that the protons on the benzene ring complexed with $\mathrm{Cr}(\mathrm{CO})_{3}$ appear at higher magnetic field. The largest up-field shift was observed for m-protons in cone $-1_{4} \operatorname{Pr} \cdot \mathrm{Cr}(\mathrm{CO})_{3}(\Delta \delta=-2.60)$. This shift is rationalized in terms of the decreased benzene ring-current which induces the decrease in the magnetic deshielding effect. In 1,2-alternate $-1_{4} \mathrm{Pr} \cdot(\mathrm{CO})_{3}$, the $\mathrm{C}-\mathrm{CH}_{2}-\mathrm{C}$ methylene protons in one of four propyl groups appeared at unusually high magnetic field ($0.37-0.47 \mathrm{ppm} ; 0.92 \mathrm{ppm}$ in uncomplexed 1,2-alternate$\mathbf{1}_{4} \mathrm{Pr}$). This is attributed to the conformational change in the calix[4]arene skeleton because such an up-field shift is not observed for the $\mathrm{C}-\mathrm{CH}_{2}-\mathrm{C}$ protons in $2 \cdot \mathrm{Cr}(\mathrm{CO})_{3}$ (1.80 ppm ; 1.82 ppm in uncomplexed 2). Thus, the up-field shift is explained

[^0]

Cone

Partial cone

1, 2-Alternate

1, 3-Alternate

cone $-1_{4} \mathrm{Pr}$

1, 3-alternate- $\mathbf{1}_{4} \mathrm{Pr}$

1, 2-alternate- $1_{4} \mathrm{Pr}$

2

Fig. 1 Assignment of $\mathrm{Cr}(\mathrm{CO})_{3}$ complexes. The numbers indicate the chemical shifts $(\delta): 3{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3},\left[\mathbf{1}_{4} \mathrm{Pr}\right]=10-30 \mathrm{mmol} \mathrm{dm}^{-3}$. The numbers in parentheses denote the shift from uncomplexed $1_{4} \operatorname{Pr}(+$ to lower magnetic field, - to higher magnetic field $)$. In $1,2-a l t e r n a t e-1_{4} \operatorname{Pr}$, two $\mathrm{ArCH} \mathbf{2}_{2} \mathrm{Ar}$ methylene protons at position B are not assigned precisely. In 1,3 -alternate- $1_{4} \mathrm{Pr}$, the m - and p-protons in the $\mathrm{Cr}(\mathrm{CO})_{3}$-complexed benzene ring appeared as a singlet at $30^{\circ} \mathrm{C}$. At low temperature $\left(-50^{\circ} \mathrm{C}\right)$ or at high temperature $\left(55^{\circ} \mathrm{C}\right)$ it splits into a doublet and a triplet. This indicates that the chemical shifts for these protons are accidentally the same at $30^{\circ} \mathrm{C}$.
(a)

(b)

Fig. 2 Partial ${ }^{1} \mathrm{H}$ NMR spectra of 1,2 -alternate- $1_{4} \operatorname{Pr} \cdot \mathrm{Cr}(\mathrm{CO})_{3}$ in the absence (a) and the presence (b) of Pirkle's reagent: $30^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}$, [1,2alternate $-1_{4} \mathrm{Pr}$] $=14 \mathrm{mmol} \mathrm{dm}{ }^{-3}$, [Pirkle's reagent] $=140 \mathrm{mmol}$ dm^{-3}. The peaks A-D correspond to the lettering shown in Fig. 1.
in relation to the 'flattening' of a phenyl unit, rendering the propyl group into the cavity composed of benzene rings. At present, we cannot specify which benzene ring is flattened.

Of further interest is the ${ }^{1} \mathrm{H}$ NMR spectrum of 1,2 -alternate$\mathbf{1}_{4} \mathrm{Pr} \cdot \mathrm{Cr}(\mathrm{CO})_{3}$ in the presence of a chiral shift reagent, Pirkle's reagent $[(S)-2,2,2$-trifluoro-1-(9-anthryl)ethanol]. As shown in Fig. 2, most signals were split into pairs. This indicates that the complex has no plane of symmetry and consists of a pair of racemates. This is a novel example for ring-originating optical isomers.

In conclusion, the present study demonstrated for the first time that calix[4]arene isomers can form stable complexes with $\mathrm{Cr}(\mathrm{CO})_{3}$ unless they have bulky substituents (such as tert-butyl) at the p-position.* The results are readily applicable to the selective introduction of a new substituent into the benzene nucleus. Further extensions of these and related calix[n]arene-$-\mathrm{Cr}(\mathrm{CO})_{3}$ complexes are now under intensive investigation. Of particular interest are (i) the nucleophilic substitution on the $\mathrm{Cr}(\mathrm{CO})_{3}$-complexed benzene nucleus, \dagger (ii) optical resolution of 1,2-alternate $-1_{4} \mathrm{Pr} \cdot \mathrm{Cr}(\mathrm{CO})_{3}$ and (iii) the molecular motion of the benzene unit carrying a 'heavy' $\mathrm{Cr}(\mathrm{CO})_{3}$ on its back.

[^1]
Acknowledgements

We thank Mr. Hideki Horiuchi for technical assistance in making glasswares for the anaerobic treatment of $\mathrm{Cr}(\mathrm{CO})_{3}$ complexes.

References

1 C. D. Gutsche, Acc. Chem. Res., 1983, 16, 161.
2 C. D. Gutsche, Synthesis of Macrocycles: The Design of Selective Complexing Agents, eds. R. M. Izatt and J. J. Christensen, John Wiley and Sons, New York, 1987, p. 93.
3 C. D. Gutsche, Calixarene, Royal Society of Chemistry, 1989.
4 S. Shinkai, Bioorg. Chem. Front., 1990, 1, 161.
5 K. H. No and C. D. Gutsche, J. Org. Chem., 1982, 47, 2713.
6 C. D. Gutsche and L.-G. Lin, Tetrahedron, 1986, 42, 1633.
7 M. Iqbal, T. Mangiafico and C. D. Gutsche, Tetrahedron, 1987, 43, 4917.

8 J.-D. Van Loon, A. Arduini, L. Coppi, W. Verboom, A. Pochini, R. Ungaro, S. Harkema and D. N. Reinhoudt, J. Org. Chem., 1990, 55, 5639.

9 K. No and M. Hong, J. Chem. Soc., Chem. Commun., 1990, 572.
10 For a comprehensive review see A. Solladie-Cavallo, Polyhedron 1985, 4, 901.

11 E. Langer and H. Lehner, Tetrahedron, 1973, 29, 375
12 H. Ohno, H. Horita, T. Otsubo, Y. Sakata and S. Misumi, Tetrahedron Lett., 1977, 265.
13 M. J. Aroney, M. K. Cooper, P. A. Englert and R. K. Pierens, J. Mol. Str., 1981, 77, 99.
14 L. C. Groenen, J.-D. van Loon, W. Verboom, S. Harkema, A. Casnati, R. Ungaro, A. Pochini, F. Ugozzoli and D. N. Reinhoudt, J. Am. Chem. Soc., 1991, 113, 2385.

15 S. Shinkai, K. Iwamoto, K. Araki and T. Matsuda, Chem. Lett., 1990 1263.

16 K. Iwamoto, K. Araki and S. Shinkia, J. Org. Chem., 1991, 56, 4955
17 K. Araki, K. Iwamoto, S. Shinkai and T. Matsuda, Chem. Lett., 1989, 1747.

18 K. Iwamoto, K. Araki and S. Shinkai, Tetrahedron, 1991, 47, 4325.
19 S. Shinkai, T. Arimura, H. Kawabata, H. Murakami, K. Araki, K Iwamoto and T. Matsuda, J. Chem. Soc., Chem. Commun., 1990, 1734.

Paper 1/06209C
Received 10th December 1991
Accepted 20th January 1992

[^0]: \dagger When cone $-1_{4} \mathrm{Pr}$ and $\mathrm{Cr}(\mathrm{CO})_{6}$ were mixed in a $1: 4$ mole ratio, the main product was a $1: 1$ complex but the presence of the $1: 2$ complex was also confirmed by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

[^1]: * The synthesis of arene-tricarbonylchromium complexes from 25,26,-27,28-tetrapropoxy-5,11,17,23-tetra-tert-butylcalix[4]arene was very difficult and the products were quite unstable. This is probably due to steric hindrance of tert-butyl groups.
 \dagger If the nucleophilic substitution occurs at the m-position, the product is optically-active even after decomplexation of $\mathrm{Cr}(\mathrm{CO})_{3}$ complexes. ${ }^{19}$

